
Frankfurt School Blockchain Center

www.fs-blockchain.de

contact@fs-blockchain.de

Follow us

www.twitter.com/fsblockchain

www.facebook.de/fsblockchain

Frankfurt School of

Finance & Management gGmbH

Sonnemannstrasse 9-11

60314 Frankfurt am Main

Germany

1

JUNE 2017

FSBC Working Paper

Comparison of Ethereum,
Hyperledger Fabric and
Corda
Martin Valenta, Philipp Sandner

With this paper, we provide a brief analysis of the most notable

differences between the distributed ledger technologies (DLT)

Hyperledger Fabric, R3 Corda and Ethereum. Our intention is to

give decision makers new to DLT guidance for what use cases

Hyperledger Fabric, Corda and Ethereum are most suitable.

Three different frameworks

From the white papers of Hyperledger Fabric, R3 Corda (in the following

only referred to as Fabric and Corda, respectively) and Ethereum it becomes

obvious that these frameworks have very different visions in mind with

respect to possible fields of application. Development of both Fabric1 and

Corda2 is driven by concrete use cases, whereas Corda’s use cases are drawn

from the financial services industry. Consequently, this is where Corda sees

its main field of application. In contrast, Fabric intends to provide a modu-

lar and extendable architecture that can be employed in various industries,

from banking and healthcare over to supply chains. Ethereum also presents

itself as utterly independent of any specific field of application.3 However, in

contrast to Fabric, it is not modularity that stands out but the provision of a

generic platform for all kinds of transactions and applications. Table 1 pro-

vides a summary of the three frameworks.

http://www.fs-blockchain.de/
mailto:contact@fs-blockchain.de
http://www.twitter.com/fsblockchain
http://www.facebook.de/fsblockchain

2

Table 1

Comparison of Ethereum, Hyperledger Fabric and Corda

Characteristic

Ethereum

Hyperledger Fabric

R3 Corda

Description of platform Generic blockchain
platform

 Modular blockchain
platform

 Specialized distrib-
uted ledger platform
for financial industry

Governance Ethereum developers Linux Foundation R3

Mode of operation Permissionless,
public or private

4

 Permissioned,
private

 Permissioned,
private

Consensus Mining based on
proof-of-work (PoW)

 Ledger level

 Broad understand-
ing of consensus
that allows multiple
approaches

 Transaction level

 Specific understand-
ing of consensus
(i.e., notary nodes)

 Transaction level

Smart contracts Smart contract code
(e.g., Solidity)

 Smart contract code
(e.g., Go, Java)

 Smart contract code
(e.g., Kotlin, Java)

 Smart legal contract
(legal prose)

Currency Ether

 Tokens via smart
contract

 None

 Currency and
tokens via
chaincode

 None

Participation of peers

With conventional central data storage, only a single entity, the owner,

keeps a copy of the underlying database, e.g. a ledger. Consequently, this

entity controls what data is contributed and what other entities are permit-

ted to contribute. With the advent of DLT this radically changes in favor of

distributed data storage where multiple entities hold a copy of the underly-

ing database and are naturally permitted to contribute. All entities that

participate in distributed data storage form a network of so-called nodes or

peers. Due to distributed data storage, the difficulty arises to ensure that all

nodes agree upon a common truth, e.g. the correctness of a ledger, as chang-

es made by one node have to be propagated to all other peer nodes in the

3

network. The result of arriving at a common truth is called consensus among

nodes and is described below.

With respect to participating to consensus, there are two modes of opera-

tion: permissionless and permissioned. If participation is permissionless,

anybody is allowed to participate in the network. This mode is true for

Ethereum as a public blockchain. On the other hand, if participation is

permissioned, participants are selected in advance and access to the net-

work is restricted to these only. This is true for Fabric and Corda. The mode

of participation, permissionless or permissioned, has a profound impact on

how consensus is reached.

Consensus

Ethereum. With Ethereum, all participants have to reach consensus over

the order of all transactions that have taken place, irrespectively of whether

a participant has taken part in a particular transaction or not. The order of

the transactions is crucial for the consistent state of the ledger. If a definitive

order of transactions cannot be established there is a chance that double-

spends might have occurred, that is, two parallel transactions transfer the

same coin to different recipients, thus making money out of thin air. As the

network might involve mutually distrusting and anonymous parties, a con-

sensus mechanism has to be employed that protects the ledger against

fraudulent or adverse participants that attempt double-spends. In the cur-

rent implementation of Ethereum, this mechanism is established by mining

based on the proof-of-work (PoW) scheme. All participants have to agree

upon a common ledger and all participants have access to all entries ever

recorded. The consequences are that PoW unfavorably affects the perfor-

mance of transactions processing.5 Concerning the data stored on the ledger,

even though records are anonymized, they are nevertheless accessible to all

participants, which is problematic for applications that require a higher

degree of privacy.

In contrast to Ethereum, Fabric’s and Corda’s interpretation of consensus is

more refined and does not merely boil down to mining based on PoW or a

derivative thereof. Due to operating in a permissioned mode, Fabric and

Corda provide a more fine-grained access control to records and thus en-

4

hance privacy. Furthermore, a gain in performance is achieved as only par-

ties taking part in a transaction have to reach consensus.

Fabric. Fabric's understanding of consensus is broad and encompasses the

whole transaction flow, starting from proposing a transaction to the network

to committing it to the ledger.6 Furthermore, nodes assume different roles

and tasks in the process of reaching consensus. This contrasts to Ethereum

where roles and tasks of nodes participating in reaching consensus are

identical.

Within Fabric, nodes are differentiated based on whether they are clients,

peers or orderers.7 A client acts on behalf of an end-user and creates and

thereby invokes transactions. They communicate with both peers and order-

ers. Peers maintain the ledger and receive ordered update messages from

orderers for committing new transactions to the ledger. Endorsers are a

special type of peer, whereas their task is to endorse a transaction by check-

ing whether they fulfill necessary and sufficient conditions (e.g. the provi-

sion of required signatures). Orderers provide a communication channel to

clients and peers over which messages containing transactions can be

broadcasted. With respect to consensus in particular, the channels ensure

that all connected peers are delivered exactly the same messages with exact-

ly the same logical order.

The mode of participation, permissionless or

permissioned, has a profound impact on how

consensus is reached.

At this point, the problem arises that there might occur faults in the delivery

of messages when many mutually untrusting orderers are employed. As a

consequence, a consensus algorithm has to be used in order to reach con-

sensus despite faults, e.g. inconsistent order of messages, thus making the

replication of the distributed ledger faults tolerant. With Fabric, the algo-

rithm employed is “pluggable”, meaning that depending on application-

5

specific requirements various algorithms can be used. For example, in order

to deal with random or malicious replication faults as outlined above a

variant of the Byzantine fault-tolerant (BFT) algorithms could be used.

Furthermore, channels partition message flows, meaning that clients only

see the messages and associated transactions of the channels they are con-

nected to and are unaware of other channels. This way, access to transac-

tions is restricted to involved parties only with the consequence that consen-

sus has only to be reached at transaction level and not at ledger level as with

Ethereum.

The roles of nodes outlined above are now described in the context of the

transaction flow: A client sends a transaction to connected endorsers in

order to initiate an update of the ledger. All endorsers have to agree upon

the proposed transaction, thus some sort of consensus has to be reached

regarding the proposed ledger update. The client now successively collects

approval of all endorsers. The approved transaction is now sent to connect-

ed orderers which again reach consensus. Subsequently, the transaction is

forwarded to peers holding the ledger for committing the transaction.

Without going further into detail, it becomes clear that Fabric allows fine-

grained control over consensus and restricted access to transactions which

results in improved performance scalability and privacy.

Corda. Similar to Fabric, consensus in Corda is also reached at transaction

level by involving parties only. Subject to consensus is transaction validity

and transaction uniqueness8. Validity is ensured by running the smart con-

tract code (smart contracts are described in detail below) associated with a

transaction, by checking for all required signatures and by assuring that any

transactions that are referred to are also valid. Uniqueness concerns the

input states of a transaction. Specifically, it has to be ensured that the trans-

action in question is the unique consumer of all its input states. In other

words, there exists no other transaction that consumes any of the same

states. The reason for this is to avoid double-spends. Consensus over

uniqueness is reached among participants called notary9 nodes, whereas the

employed algorithm is “pluggable” as with Fabric. So once again a BFT

algorithm might be used.

6

Smart contracts

The term “smart contract” causes considerable misunderstanding when first

encountered as it evokes the idea of some sort of contract that intelligently

acts on one’s behalf. The contract’s nature, however, remains vague, but

intuitively appears to be linked to legal matters. That said, focal contracts

are neither smart in the sense that they are e.g. driven by artificial intelli-

gence, at least not yet, nor do they generally encode obligations and rights

that are legally binding. Clark and colleagues10 provide a useful terminology

by highlighting two different ways the term “smart contracts” is commonly

used. The first refers to smart contract code, the second to smart legal

contracts, two distinctions that prove to be beneficial in the context of this

comparison.

Smart contract code simply denotes software written in a programming

language. It acts as a software agent or delegate of the party that employed it

with the intention that it fulfills certain obligations, exercises rights and may

take control of assets within a distributed ledger in an automated way. Thus,

it takes on tasks and responsibilities in the distributed ledger world by exe-

cuting code that models or emulates contract logic in the real world, though

its legal justification may be unclear.

Smart contract code simply denotes software

written in a programming language.

All DLTs feature smart contracts in the sense of smart contract code that can

be written in Go or Java for Fabric11, in Solidity12 for Ethereum and in Java

or Kotlin for Corda13. In Fabric, the term “chaincode” is used as a synonym

for smart contract. As an illustrative example, the reader is reminded of the

usage of a smart contract code in the consensus mechanism of Corda in

order to ensure transaction validity. However, there is a notable difference

between Fabric and Ethereum on the one hand and Corda on the other that

is connected to the second way the “smart contracts” term is used.

7

In Corda, smart contracts not only consist of code but additionally are al-

lowed to contain legal prose. Thus above smart legal contracts are legal

prose that are formulated in a way that they can be expressed and imple-

mented in smart contract code. The rationale behind this is to give the code

legitimacy that is rooted in the associated legal prose. Such a construct is

called Ricardian Contract14. At this point, it again becomes clear that Corda

was explicitly designed to account for the highly regulated environment of

the financial services industry. Both Fabric and Ethereum lack this feature.

Built-in currency

Another noteworthy difference is that Ethereum features a build-in crypto-

currency called Ether. It is used to pay rewards to nodes that contribute to

reach consensus by mining blocks as well as to pay transaction fees. There-

fore decentralized apps (DApps) can be built for Ethereum that allow mone-

tary transactions. Furthermore, a digital token for custom use cases can be

created by deploying a smart contract that conforms to a pre-defined stand-

ard.15 This way, own currencies or assets can be defined.

Fabric and Corda do not require a build-in cryptocurrency as consensus is

not reached via mining. With Fabric, however, it is possible to develop a

native currency or a digital token with chaincode.16 With Corda, a creation of

digital currencies or tokens is not intended.17

Summary: customized vs. generic platform

To sum up, the examined DLTs span a continuum. On the one side, there is

Fabric and Ethereum. They both are highly flexible, but in different aspects.

Ethereum’s powerful smart contracts engine makes it a generic platform for

literally any kind of application. However, Ethereum’s permissionless mode

of operation and its total transparency comes at the cost of performance

scalability and privacy. Fabric solves performance scalability and privacy

issues by permissioned mode of operation and specifically by using a BFT

algorithm and fine-grained access control. Further, the modular architec-

ture allows Fabric to be customized to a multitude of applications. An analo-

gy to a versatile toolbox can be drawn.

8

Corda is located at the other end. It has been consciously designed as DLT

for the financial services industry. Most notably, it takes the highly regulated

environment into account by augmenting smart contracts with legal prose.

Apparently, Corda’s focus solely on financial services transactions simplified

its architectural design compared to Fabric. Therefore, it might offer a more

out-of-the-box experience. However, it might be possible that Fabric, due to

its modularity, can be tailored to resemble Corda’s feature set. Efforts exist

that seek to integrate Corda into the Hyperledger project. Corda therefore

cannot be seen as a competitor to Fabric but more as a complement.

Martin Valenta is blockchain engineer and consultant at the Frankfurt School

Blockchain Center. You can contact him via mail (martin.valenta@gmx.net).

Prof. Dr. Philipp Sandner is head of the Frankfurt School Blockchain Center. You

can contact him via mail (email@philipp-sandner.de) or follow him on Twitter

(@philippsandner).

1 https://docs.google.com/document/d/1Z4M_qwILLRehPbVRUsJ3OF8Iir-gqS-ZYe7W-

LE9gnE/pub
2 https://docs.corda.net/_static/corda-introductory-whitepaper.pdf
3 https://github.com/ethereum/wiki/wiki/White-Paper
4 e.g. https://github.com/jpmorganchase/quorum
5 Vukolić M. (2016). The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT

Replication, in: Camenisch J., Kesdoğan D. (eds.) Open Problems in Network Security,
iNetSec 2015, Lecture Notes in Computer Science, Vol. 9591, Springer.

6 https://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html#consensus
7 https://github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-

Architecture-Proposal.md
8 https://docs.corda.net/key-concepts-consensus.html
9 https://docs.corda.net/key-concepts-notaries.html
10 http://arxiv.org/abs/1608.00771
11 http://hyperledger-fabric.readthedocs.io/en/latest/chaincode.html
12 http://solidity.readthedocs.io/en/latest/
13 https://docs.corda.net/tutorial-contract.html
14 http://iang.org/papers/ricardian_contract.html
15 https://www.ethereum.org/token
16 https://hyperledger-fabric.readthedocs.io/en/v0.6/FAQ/chaincode_FAQ.html
17 https://discourse.corda.net/t/mobile-consumer-payment-experiences-with-corda-on-

ledger-cash/966?source_topic_id=962

mailto:martin.valenta@gmx.net
mailto:email@philipp-sandner.de
https://twitter.com/philippsandner
https://docs.google.com/document/d/1Z4M_qwILLRehPbVRUsJ3OF8Iir-gqS-ZYe7W-LE9gnE/pub
https://docs.google.com/document/d/1Z4M_qwILLRehPbVRUsJ3OF8Iir-gqS-ZYe7W-LE9gnE/pub
https://docs.corda.net/_static/corda-introductory-whitepaper.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://hyperledger-fabric.readthedocs.io/en/latest/fabric_model.html#consensus
https://github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-Architecture-Proposal.md
https://github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-Architecture-Proposal.md
https://docs.corda.net/key-concepts-consensus.html
https://docs.corda.net/key-concepts-notaries.html
http://arxiv.org/abs/1608.00771
http://hyperledger-fabric.readthedocs.io/en/latest/chaincode.html
https://docs.corda.net/tutorial-contract.html
http://iang.org/papers/ricardian_contract.html
https://www.ethereum.org/token
https://hyperledger-fabric.readthedocs.io/en/v0.6/FAQ/chaincode_FAQ.html
https://discourse.corda.net/t/mobile-consumer-payment-experiences-with-corda-on-ledger-cash/966?source_topic_id=962
https://discourse.corda.net/t/mobile-consumer-payment-experiences-with-corda-on-ledger-cash/966?source_topic_id=962

